Preview

Title in english

Advanced search

Application of microwave radiation for seed pre-sowing treatment (review)

https://doi.org/10.32786/2071-9485-2023-03-51

Abstract

Introduction. Exposure to microwave electromagnetic radiation is one of effective physical methods of seed pre-sowing treatment. The aim of the research – review and critical analysis of scientific publications, describing the microwave radiation application for seed pre-sowing treatment to determine the prospects of its use in agriculture.

Materials and methods. The review of scientific literature on the stated topic for 2013-2023 was carried out. The study consisted of the following stages: scientific literature search, its evaluation and selection, data synthesis and analysis.

Results and conclusions. It was found that although intensive treatment of seeds with microwave radiation causes stress, its application in low doses of power or for a short time causes the effect of stimulating germination. Microwave pretreatment improves seed germination, germination energy and seedling growth. The action of microwave radiation changes the chemical composition of seeds, activates the synthesis of enzymes, contributing to their better germination. The most promising direction of research is the experimental determination of such parameters of seed presowing treatment with microwave radiation, which simultaneously provide both their disinfection and stimulation of germination and the subsequent resistance of agricultural plants to abiogenous stress.

About the Authors

O. N. Bakhchevnikov
Agricultural Scientific Centre «Donskoy»
Russian Federation

Bakhchevnikov Oleg Nikolayevich, Candidate of Technical Sciences, Senior Researcher

14 Lenin St., Zernograd, Rostov Region, 347740, Russia



A. V. Braginets
Agricultural Scientific Centre «Donskoy»
Russian Federation

Braginets Andrey Valereyvich, Candidate of Technical Sciences, Researcher

14 Lenin St., Zernograd, Rostov Region, 347740, Russia



References

1. Gavrilova A. A., Filatov D. A., Kazakov A. V. The effect of microwave exposure on the germination of barley seeds//Rural machine operator. 2020. № 4. Pp. 18-19.

2. Moiseeva K.V., Safonova L.A. Effectiveness of pre-sowing disinfection of spring wheat seeds//Agri-food policy of Russia. 2017. № 9. Pp. 56-59.

3. Shamgunov I.I., Stepura A.V. Study of the effect of pre-sowing microwave exposure on morphological indicators of germinating seeds of spring wheat//Engineering Bulletin of the Don. 2017. № 2. Pp 85-91.

4. Abu-Elsaoud A. M. Effect of microwave electromagnetic radio frequency on germination and seedling growth consequences of six wheat Triticum aestivum L. cul-tivars // Advances in Environmental Biology. 2015. Vol. 9. No 24. Pp. 270-280.

5. Aladjadjiyan A. Influence of microwave irradiation on some vitality indices and electroconductivity of ornamental perennial crops // Journal of Central European Ag-riculture. 2002. Vol. 3. No 4. Pp. 271-276.

6. Anand A., Nagarajan S., Joshi D. K., Verma A. P. S., Kar A. Microwave seed treatment reduces hardseededness in Stylosanthes seabrana and promotes redistribu-tion of cellular water as studied by NMR relaxation measurements // Seed Science and Technology. 2009. Vol. 37. Pp. 88-97.

7. Araujo S. D. S., Paparella S., Dondi D. Physical methods for seed invigora-tion: advantages and challenges in seed technology // Frontiers in Plant Science. 2016. Vol. 7. P. 646.

8. Atmaca S., Akdag Z., Dasdag S., Celik S. Effect of microwaves on survival of some bacterial strains // Acta Microbiologica et Immunologica Hungarica. 1995. Vol. 43. No 4. Pp. 371-378.

9. Banik S. Bandyopadhyay S., Ganguly S. Bioeffects of microwave – a brief review // Bioresource Technology. 2003. Vol. 87. No 2. Pp. 155-159.

10. Bera K., Dutta P., Sadhukhan S. Seed priming with non-ionizing physical agents: Plant responses and underlying physiological mechanisms // Plant Cell Reports. 2022. Vol. 41. No 1. Pp. 53-73.

11. Bezpalko V. V., Zhukova L. V., Stankevych S. V. Ecologically safe meth-ods for presowing treatment of cereal seeds // Ukrainian Journal of Ecology. 2019. Vol. 9. No 3. Pp. 189-197.

12. Brodie G., Ryan C., Lancaster C. The effect of microwave radiation on prickly paddy melon (Cucumis myriocarpus) // International Journal of Agronomy. 2012. Vol. 10. P. 287608.

13. Carrera-Castano G., Calleja-Cabrera J., Pernas M. An updated overview on the regulation of seed germination // Plants. 2020. Vol. 9. No 6. P. 703.

14. Chen Y. P., Jia J. F., Han X. L. Weak microwave can alleviate water deficit induced by osmotic stress in wheat seedlings // Planta. 2009. Vol. 229. Pp. 291-298.

15. Cretescu I., Caprita R. Response of barley seedlings to microwaves at 2.45 GHz // Scientific Papers: Animal Science & Biotechnologies. 2013. Vol. 46. No 1. Pp. 185-191.

16. Dalmoro A. On the relevance of thermophysical characterization in the mi-crowave treatment of legumes // Food & Function. 2018. Vol. 9. No 3. Pp. 1816-1828.

17. Gaurilcikiene I. The effect of strong microwave electric field radiation on: (2) wheat (Triticum aestivum L.) seed germination and sanitation // Zemdirbyste-Agriculture. 2013. Vol. 100. Pp. 185-190.

18. Gunasekaran S., Yang H. Effect of experimental parameters on temperature distribution during continuous and pulsed microwave heating // Journal of Food Engineer-ing. 2007. Vol. 78. Pp. 1452-1456.

19. Guo Q. Microwave processing techniques and their recent applications in the food industry // Trends in Food Science & Technology. 2017. Vol. 67. Pp. 236-247.

20. Hamada E. A. M. Effects of microwave treatment on growth, photosynthetic pigments and some metabolites of wheat // Biologia Plantarum. 2007. Vol. 51. Pp. 343-345.

21. Haque N., Agrawal A., Pati A. K. A Mini Review on effects of Microwave on Seed Germination // Research Journal of Pharmacognosy and Phytochemistry. 2023. Vol. 15. No 1. P. 82-86.

22. Huang H.-H., Wang S.-R. The effects of inverter magnetic fields on early seed germination of mung beans // Bioelectromagnetics. 2008. Vol. 29. Pp. 649-657.

23. Iuliana C. Response of barley seedlings to microwaves at 2.45 GHz // Sci-entific Papers: Animal Science & Biotechnologies. 2013. Vol. 46. No 1. Pp. 185-191.

24. Impact of controlled microwave radiation in enhancing the productivity of Abelmoschus esculentus seedlings (L.) Moench / E. Iwuala [et al.] // Journal of Plant In-teractions. 2021. Vol. 16. No 1. Pp. 179-186.

25. Jakubowski T. The impact of microwave radiation at different frequencies on the weight of seed potato germs and crop of potato tubers // Agricultural Engineering. 2010. Vol. 6. No 124. P. 57-64.

26. Jakubowski T. Evaluation of the impact of pre-sowing microwave stimula-tion of bean seeds on the germination process // Agricultural Engineering. 2015. Vol. 19. No 2. P. 45-56.

27. Jiao S., Zhong Y., Deng Y. Hot air-assisted radio frequency heating effects on wheat and corn seeds: quality change and fungi inhibition // Journal of Stored Products Research. 2016. Vol. 69. P. 265-271.

28. Knox O. G., McHugh M., Fountaine J. M., Havis N. D. Effects of micro-waves on fungal pathogens of wheat seed // Crop Protection. 2013. Vol. 50. P. 12–16.

29. Kouchebagh S. B., Rasouli P., Babaiy A. H., Reza A. Seed germination of pot marigold (Calendula officinalis L.) as affected by physical priming techniques // Inter-national Journal of Biosciences. 2015. Vol. 6. P. 49-54.

30. Lazim S. K., Ramadhan M. N. Effect of microwave and UV-C radiation on some germination parameters of barley seed using mathematical models of Gompertz and logistic: Analysis study // Basrah Journal of Agricultural Sciences. 2020. Vol. 33. No 2. P. 28-41.

31. Lew A., Krutzik P. O., Hart M. E., Chamberlin A. R. Increasing rates of re-action: microwave-assisted organic synthesis for combinatorial chemistry // Journal of Combinatorial Chemistry. 2002. Vol. 4. No 2. P. 95-105.

32. Manickavasagan A., Jayas D. S., White N. D. G. Germination of wheat grains from uneven microwave heating in an industrial microwave dryer // Canadian Bio-systems Engineering. 2007. Vol. 49. P. 3.

33. Maswada H. F., Sunoj V. S. J., Prasad P. V. V. A comparative study on the effect of seed pre-sowing treatments with microwave radiation and salicylic acid in allevi-ating the drought-induced damage in wheat // Journal of Plant Growth Regulation. 2021. Vol. 40. P. 48-66.

34. Mattson M. P. Hormesis defined // Ageing Research Reviews. 2008. Vol. 7. No 1. P. 1-7.

35. Nalwa C., Seth M. Physiology of Seed Dormancy and Germination - A Re-view // Journal of Pharmaceutical Research International. 2021. Vol. 33. No 58A. P. 557-562.

36. Paparella S., Araújo S. S., Rossi G. Seed priming: state of the art and new perspectives // Plant Cell Reports. 2015. Vol. 34. P. 1281-1293.

37. Qiu Z. B., Guo J. L. Nitric oxide acts as a signal molecule in microwave pretreatment induced cadmium tolerance in wheat seedlings // Acta Physiologiae Planta-rum. 2013. Vol. 35. P. 65-73.

38. Qiu Z. B., Zhang M. M., Guo J. L., Lei M. Y. Role of nitric oxide in im-proving cadmium tolerance of microwave-pretreated wheat seedlings // Chinese Journal of Ecology (Sheng Tai Xue Za Zhi). 2013. Vol. 32. P. 1794-1799.

39. Radzevičius A. The effect of strong microwave electric field radiation on: (1) vegetable seed germination and seedling growth rate // Zemdirbyste-Agriculture. 2013. Vol. 100. P. 179-184.

40. Reddy M. V. B., Raghavan G. S. V., Kushalappa A. C., Paulitz T. C. Effect of microwave treatment on quality of wheat seedsi with Fusarium graminearum // Journal of Agricultural Engineering Research. 1998. Vol. 71. No 2. P. 113-117.

41. Rifna E. J., Ramanan K. R., Mahendran R. Emerging technology applica-tions for improving seed germination // Trends in Food Science & Technology. 2019. Vol. 86. P. 95-108.

42. Romero-Galindo R. Biophysical methods used to generate tolerance to drought stress in seeds and plants: a review // International Agrophysics. 2022. Vol. 35. No. 4. P. 389-410.

43. Sahin H. Effects of microwaves on the germination of weed seeds // Journal of Biosystems Engineering. 2014. Vol. 39. P. 304-309.

44. Scialabba A., Tamburello C. Microwave effects on germination and growth of radish (Raphanus sativus L.) seedlings // Acta Botanica Gallica. 2002. Vol. 149. No 2. P. 113-123.

45. Schmidt M., Zannini E., Arendt E. Recent advances in physical post-harvest treatments for shelf-life extension of cereal crops // Foods. 2018. Vol. 7. P. 45.

46. Sirohi R., Tarafdar A. Technologies for disinfection of food grains: Ad-vances and way forward // Food Research International. 2021. Vol. 145. P. 110396.

47. Shashurin M. M. Physiological responses of Plantago media to electromag-netic field of power-line frequency (50 Hz) // Russian Journal of Plant Physiology. 2014. Vol. 61. No 4. P. 484-488.

48. Snyder H. Literature review as a research methodology: An overview and guidelines // Journal of Business Research. 2019. Vol. 104. P. 333-339.

49. Sukiasyan A., Mikaelyan Y., Ayrapetyan S. Comparative study of non-ionizing and ionizing radiation effect on hydration of winter wheat seeds in metabolic ac-tive and inactive states // The Environmentalist. 2012. Vol. 32. No 2. P. 188-192.

50. Taheri S., Brodie G., Jacob M. V., Antunes E. Dielectric properties of chickpea, red and green lentil in the microwave frequency range as a function of tempera-ture and moisture content // Journal of Microwave Power and Electromagnetic Energy. 2018. Vol. 52. No 3. P. 198-214.

51. Taheri S., Brodie G., Gupta D. Fluidisation of lentil seeds during micro-wave drying and disinfection could prevent detrimental impacts on their chemical and bi-ochemical characteristics // LWT-Food Science and Technology. 2020. Vol. 129. P. 109534.

52. Taheri S., Brodie G.I., Gupta D. Microwave Heating for Grain Treatment // Agritech: Innovative Agriculture Using Microwaves and Plasmas. 2022. Springer, Singa-pore. P. 165-197.

53. Talei D., Valdiani A., Maziah M., Mohsenkhah M. Germination response of MR 219 rice variety to different exposure times and periods of 2450 MHz microwave frequency // The Scientific World Journal. 2013. P. 408026.

54. Torraco R. J. Writing integrative reviews of the literature: Methods and purposes // International Journal of Adult Vocational Education and Technology (IJAVET). 2016. Vol. 7. No 3. P. 62-70.

55. Tuan P. A., Kumar R., Rehal P. K., Toora P. K., Ayele B. T. Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals // Frontiers in Plant Science. 2018. Vol. 9. P. 668-681.

56. Vázquez-Hernández M. C., Parola-Contreras I., Montoya-Gómez L. M. Eu-stressors: Chemical and physical stress factors used to enhance vegetables production // Scientia Horticulturae. 2019. Vol. 250. P. 223-229.

57. Vian A., Roux D., Girard S. Microwave irradiation affects gene expression in plants // Plant Signaling & Behavior. 2006. Vol. 1. No 2. P. 67-70.

58. Vian A., Davies E., Gendraud M., Bonnet P. Plant responses to high fre-quency electromagnetic fields // BioMed research international. 2016. P. 1-13.

59. Villagómez-Aranda A. L. Activating stress memory: Eustressors as potential tools for plant breeding // Plant Cell Reports. 2022. Vol. 41. No. 7. P. 1481-1498.

60. Wang D. X., Liu Y. Lethal effects of microwave treatment on Sitophilus oryzae Linnaeus and germination rate of wheat // Journal of Nuclear Agricultural Sciences. 2011. Vol. 25. No 1. P. 105-109.

61. Wang S. M., Wang J. F., Guo Y. B. Microwave irradiation enhances the germination rate of tartary buckwheat and content of some compounds in its sprouts // Polish Journal of Food and Nutrition Sciences. 2018. Vol. 68. P. 195-205.

62. Wang J., Ma H., Wang S. Application of ultrasound, microwaves, and magnetic fields techniques in the germination of cereals // Food Science and Technology Research. 2019. Vol. 25. No 4. P. 489-497.

63. Wu X. H., Luo G. Q., Feng J. M. Effects of microwave treatment on the ni-trogen metabolism of oat seedlings under Na2CO3 stress // J. Microwaves (Wei Bo Xue Bao). 2017. Vol. 33. P. 91-96.

64. Yadav D. N., Anand T., Sharma M., Gupta R. K. Microwave technology for disinfestation of cereals and pulses: An overview // Journal of Food Science and Tech-nology. 2014. Vol. 51. P. 3568-3576.

65. Yanenko A. F., Matsibura A. P., Peregudov S. N., Uniyaka T. L. Impact of microwave radiation on vegetable biological objects // 14th International Crimean Confer-ence Microwave and Telecommunication Technology. Sevastopol, 2004. P. 721-722.

66. Ye J., Hong T., Wu Y. Model stirrer based on a multi-material turntable for microwave processing materials // Materials. 2017. Vol. 10. No 2. P. 95.


Review

For citations:


Bakhchevnikov O.N., Braginets A.V. Application of microwave radiation for seed pre-sowing treatment (review). Title in english. 2023;(3 (71)):509-526. (In Russ.) https://doi.org/10.32786/2071-9485-2023-03-51

Views: 114


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9485 (Print)