Preview

Title in english

Advanced search

Screening Robinia pseudoacacia L. seedlings for salt stress resistance for subsequent detection of resistant genotypes by molecular genetic methods

https://doi.org/10.32786/2071-9485-2023-04-20

Abstract

The aim of this work was development of a screening system to find salt stress tolerant black locust seedling for following identification of stress tolerant genotypes. Our system combined original protocol of black locust seed germination under salt stress conditions and originally modified DNA extraction protocol. Salt stress induced changes in germination capacity, morphological indexes and biochemical markers confirmed stress development in proposed screening system. Used DNA extraction method allowed preparing DNA with good quality for molecular genetic research. Therefore, developed screening system can be applicable to find salt stress tolerant black locust genotypes.

Introduction. Soil salinity is an unfavorable natural factor acting in addition to water deficiency in arid areas. Black locust (Robinia pseudoacacia L.) is tree widely used in agroforestry in arid lands. Therefore identification of black locust genotypes exhibiting increased salt stress tolerance is highly important.

Objects. Black locust seeds and seedlings.

Materials and methods. Black locust seeds were germinated without or with NaCl in irrigation water (range of concentrations 0-300 mM). We measured seed germination rate, weight and length of 46 days old seedlings and some stress related biochemical markers.

Results and conclusions. We found black locust seed germination capacity decreased with an increase in the concentration of NaCl (from 93% at 0 mM to 9% at 300 mM). Seedlings grown in the presence of NaCl had some morphological alterations and changes in the biochemical marker values. Strong negative correlation between NaCl concentration in irrigation water and aerial part length to root length ratio was observed. Proposed DNA extraction method allowed to prepare DNA with good quality for molecular genetic research. Developed screening system could be used to find salt stress tolerant black locust seedling for following identification of stress tolerant genotypes.

About the Authors

T. S. Babakova
Federal Research Centre of Agroecology, Complex Reclamation and Protective Forest Breeding of the Russian Academy of Sciences
Russian Federation

Babakova Tatiana Sergeevna, Junior Researcher, Laboratory of Molecular Selection

Russian Federation, 400062, Volgograd, Universitetskiy Prospekt, 97



N. P. Fefelova
Federal Research Centre of Agroecology, Complex Reclamation and Protective Forest Breeding of the Russian Academy of Sciences
Russian Federation

Fefelova Natalya Petrovna, Research Engineer of the Laboratory of Molecular Selection

 Russian Federation, 400062, Volgograd, Universitetskiy Prospekt, 97



M. S. Kakotkina
Federal Research Centre of Agroecology, Complex Reclamation and Protective Forest Breeding of the Russian Academy of Sciences
Russian Federation

Kakotkina Margarita Sergeevna, research engineer of the molecular selection laboratory

 Russian Federation, 400062, Volgograd, Universitetskiy Prospekt, 97



S. V. Matveeva
Federal Research Centre of Agroecology, Complex Reclamation and Protective Forest Breeding of the Russian Academy of Sciences
Russian Federation

Matveeva Sofia Vladimirovna, Junior Researcher, Laboratory of Molecular Selection

 Russian Federation, 400062, Volgograd, Universitetskiy Prospekt, 97



A. A. Vasilyeva
Federal Research Centre of Agroecology, Complex Reclamation and Protective Forest Breeding of the Russian Academy of Sciences
Russian Federation

Vasilyeva Alyona Aleksandrovna, laboratory assistant-researcher of the laboratory of molecular selection

 Russian Federation, 400062, Volgograd, Universitetskiy Prospekt, 97



A. S. Popova
Federal Research Centre of Agroecology, Complex Reclamation and Protective Forest Breeding of the Russian Academy of Sciences
Russian Federation

Popova Anna Sergeevna, Junior Researcher, Laboratory of Molecular Selection

 Russian Federation, 400062, Volgograd, Universitetskiy Prospekt, 97



V. G. Zaitsev
Volgograd State University
Russian Federation

Zaitsev Valery Gennadievich, Candidate of Biological Sciences, Associate Professor of the Department of Bioengineering and Bioinformatics

Russia, 400062, Volgograd, Universitetskiy Avenue, 100



References

1. Ainsworth E. A., Gillespie K. M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols. 2007. V. 2. № 4. Pр. 875-877.

2. Eswar D., Karuppusamy R., Chellamuthu S. Drivers of soil salinity and their correlation with climate change. Current Opinion in Environmental Sustainability. 2021. V. 50. Pр. 310-318.

3. Gu J., Weina L., Akinnagbe A., Wang J., Jia L., Yang M. Effect of salt stress on genetic diversity of Robinia pseudoacacia seedlings. African Journal of Biotechnology. 2012. V. 11. № 8. Pр. 1838-1847.

4. Isah T. Stress and defense responses in plant secondary metabolites production. Biological Research. 2019. V. 29. № 52 (1). P. 39.

5. Liang H., Meng Z., Li Z., Liu G. The Effect of Robinia pseudoacacia Plantation on Soil Desiccation across Different Precipitation Zones of the Loess Plateau, China. Forests. 2022. V. 13. № 2. P. 321.

6. Liu L., Huang F.-L., Luo Q.-X, Pang H.-Y., Meng F.-J. cDNA- AFLP analysis of the response of tetraploid black locust (Robinia pseudoacacia L.) to salt stress. African Journal of Biotechnology. 2012. V. 11. № 13. Рр. 3116-3124.

7. Liu S., Jiang Y., Guo X., Xu L., Lei P., Luo Q., Liu J., Li W., Tao L., Meng F. The lectin gene TRpL1 of tetraploid Robinia pseudoacacia L. response to salt stress. Journal of Forestry Research. 2022. doi:10.1007/s11676-022-01479-0.

8. Luo Q., Peng M., Zhang X., Lei P., Ji X., Chow W., Meng F., Sun G. Comparative mitochondrial proteomic, physiological, biochemical and ultrastructural profiling reveal factors underpinning salt tolerance in tetraploid black locust (Robinia pseudoacacia L.). BMC Genomics. 2017. V. 18. P. 648.

9. Mantovani D., Veste M., Böhm C., Vignudelli M., Freese D. Spatial and temporal variation of drought impact on black locust (Robinia pseudoacacia L.) water status and growth. iForest. 2015. V. 8. Pр. 743-747.

10. Mao P., Zhang Y., Cao B., Guo L., Shao H., Cao Z., Jiang Q., Wang X. Physiological and Proteomic Responses of Diploid and Tetraploid Black Locust (Robinia pseudoacacia L.) Subjected to Salt Stress. Int J Mol Sci. 2013. V. 14. № 10. Pр. 20299-20325.

11. Maoa P., Zhanga Y., Caoa B., Guoa L., Shaobc H., Caoa Z., Jianga Q., Wanga X. Effects of salt stress on eco-physiological characteristics in Robinia pseudoacacia based on salt-soil rhizosphere. Science of The Total Environment. 2016. V. 568. Pр. 118-123.

12. Matić P., Sabljić M., Jakobek L. Validation of spectrophotometric methods for the determination of total polyphenol and total flavonoid content. Journal of AOAC International. 2017. V. 100. Pр. 1795-1803.

13. Meng F., Luo Q., Wang Q., Zhang X., Qi Z., Xu F., Lei X., Cao Y., Soon Chow W., Sun G. Physiological and proteomic responses to salt stress in chloroplasts of diploid and tetraploid black locust (Robinia pseudoacacia L.). Scientific Reports. 2016. V. 6. P. 23098.

14. Moorhouse-Gann R. J., Dunn J. C., de Vere N., Goder M., Cole N., Hipperson H., Symondson W. O. C. New universal ITS2 primers for high-resolution herbivory analyses using DNA metabarcoding in both tropical and temperate zones. Scientific Reports. 2018. V. 8. № 8542.

15. Nicolescu V. N., Rédei K., Mason W. L. et al. Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. Journal of Forestry Research. 2020. V. 31. Pр. 1081-1101.

16. Niu Ch., Kebede H., Auld D. L., Woodward J. E., Burow G., Wright R. J. A safe inexpensive method to isolate high quality plant and fungal DNA in an open laboratory environment. African Journal of Biotechnology. 2008. V. 7. № 16. Pр. 2818-2822.

17. Sahu S. K., Thangaraj M., Kathiresan K. DNA Extraction Protocol for Plants with High Levels of Secondary Metabolites and Polysaccharides without Using Liquid Nitrogen and Phenol. ISRN Molecular Biology. 2012. Р. 205049.

18. Schrader C., Schielke A., Ellerbroek L., Johne R. PCR inhibitors – occurrence, properties and removal. Journal of Applied Microbiology. 2012. V. 113. № 5. Pр. 1014-1026.

19. Staruhina A. O., Popova A. S., Zaitsev V. G. The Quantification of Chlorophylls and Carotenoids in the Same Sample of an Individual Condition Assessment of Agricultural Plant’s Seedlings. Scientific Agronomy Journal. 2021. V. 2. № 113. Pр. 18-22.

20. Uçarlı C. Effects of Salinity on Seed Germination and Early Seedling Stage. Abiotic Stress in Plants. London. IntechOpen. 2020.

21. Weina L., Haiyue J., Minsheng Y., Juntao G. Selection of salt-tolerance on Robinia pseudoacacia seedings and impact of salt stress on seedlings physiological characteristics. Journal of Agricultural University of Hebei. 2010. V. 33. № 3. Pр.62-66.


Review

For citations:


Babakova T.S., Fefelova N.P., Kakotkina M.S., Matveeva S.V., Vasilyeva A.A., Popova A.S., Zaitsev V.G. Screening Robinia pseudoacacia L. seedlings for salt stress resistance for subsequent detection of resistant genotypes by molecular genetic methods. Title in english. 2023;(4 (72)):192-202. (In Russ.) https://doi.org/10.32786/2071-9485-2023-04-20

Views: 35


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9485 (Print)